EQUILIBRIUM OF A CRACK IN A POROUS MEDIUM
WITH INJECTION OF THE FILTERING LIQUID

Yu. A. Peslyak UDC 532.546

In connection with the exploitation of petroleum deposits, the article discusses the equilibrium
of a porous medium with a crack under conditions of plane deformation, with the steady-state
filtration of a liquid injected into the porous medium through a crack. If is assumed that the
crack, which has initial zero dimensions, can become wider and longer with a rise in the pres-
sure. The displacement of the sides of the crack is determined on the basis of the theory of
elasticity, taking account of the deformationproperties of a saturated porous medium. The
stress and the displacement are expressed in terms of two analytical Muskhelishvili functions
and the complex filtration potential. A change in the volume of the porous medium leads to

a discontinuity of the displacements at the feed contour, and to distortion in the filtration re-
gion. For a circular stratum, the dimensions of the crack and the mass flow rate of the liquid
are determined in the first approximation. The region of values of the pressure in which there
exists a stable equilibrium state of the open crack and a steady-state flow of the liquid is
found.

1. With the investigation of filtration in a porous medium with a crack, in the case of a moderate
pressure of the liquid the deformation of the crack is generally neglected [1, 2]. In {2] the deformation was
partially taken into consideration with unsteady-state filtration, when the width of the crack is small com-~
pared to its initial value.

With an increse in the pressure of the saturating liquid, the dimensions of the crack can increase con-
siderably. Such conditions exist with the hydraulic fracture of an oil-bearing stratum, and in the case of
the flooding of a stratum at a pressure greater than the well pressure [3, 4].

The dependence between the deformations and the stresses in a porous medium can be represented in
the form [5]

(34— 73983 + Bebs L.1)
i j=1,2,3; 0 =040y 8;5=0, izj; &5=1, i=]

where p=E/2(1+ p), E, y are the shear modulus, the elastic modulus, and the Poisson coefficient of the
skeleton of the porous medium (the dry rock); 8 =8,—8; By is the coefficient of linear compressibility of
the solid phase (the grains making up the porous medium); 8y= (1—2yp)/E is the coefficient of linear com-
pressibility of the pressure of the porous medium;

The coefficient B depends on the degree of cementing of the rock &=4;/8, and determines the change
in the volume of the porous medium, as a result of a change in the pressure of the liquid, with a constant
tensor of the total stresses oij-

In the limiting case of ideally cemented rocks € —1, we have §—0. The deformation of such rocks
is determined only by the total stresses. We note that, with §— 0, the porosity m — 0.

In another limiting case of soft soils, when € — 0, the deformation is completely determined by the
effective stresses ¢;°=04;~p0;;.
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173 [ I AT 7 Using (1.1), the stresses and deformations in a porous medium un-
A offes / / / / der conditions of plane deformation of the stratum and plane steady-state
a4 / // // flow of the liquid can be expressed in terms of two analytical functions
/

¢ (2), p (z) and the complex filtration potential w(z) z=x+iy; the rectangu-
lar coordinates x, y are introduced in the plane of the deformation.
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Fig. 1 where k is the permeability of the porous medium; 7 is the viscosity of the
& liquid.
. Formulas (1.2) can be obtained by a method used with steady-state
&5 'ﬁ 7 2/7 4/ thermal action [6].
n
ou— 9 2. Let us consider a homogeneous porous stratum with a circular
/ / / feed contour, at whose center there is a borehole and a symmetrical ver-
23 / (/// tical crack, directed along the x axis, passing through it. We shall as-
22 / / sume that the role of the borehole reduces to a linear source, from which
///// the liquid enters the crack. At the feed contour, the pressure of the liquid
a7 A 7 is equal to pg. Outside the feed contour, the pressure is constant or there
p " ink, is no liquid.
o a0 G A change in the volume of the porous medium in the filtration re-
Fig. 2 gion leads to a discontinuity in the displacements at the feed contour.
Therefore, the problem under consideration reduces to a problem in the
o theory of elasticity for tightly constituted bodies.
L e — k
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// ; (P1+27611+E1=(P2+%62,+1_‘723 Bew:ipk‘, ten (2.2
o v i © © 1
o / (3_4")@1_‘g—,al,_$1+2P‘(1+V)BP=(3—4'V)‘P2_ %62'—\_527 ="
4 !
’ L[ P =\[Lw@—n]o @ 2.3)
o0r 703 205

. The transform z=w (¢ ) brings the filtration region to a circular
Fig. 3 concentric annulus in the plane g=pel®., The annulus is bounded by the
circles v, and Vi having the radii 1 and Py-

Assuming that the crack is small compared with the dimensions of the stratum, we can take w="Y,1(z+
1/%),where2l is the length of the crack. Then the circle with the radius pi = 2Ry /1, where Ry is the radius
of the stratum, corresponds to an elliptical contour in the plane of z, close to the feed contour. The devia-
tion of the elliptical contour from the circular contour of the stratum with I < 0.2Ry does not exceed 0.01 R.

For the principal vector of the forces applid to the contour of the crack we have

l 1\d .
== {r@—F) T o=e 2.4
where p(g) is the pressure at the contour of the crack. The tangential stresses due to viscous friction have
only a negligible effect on the deformation of the crack.

The volumetric changes in the stratum brought about by injection of the liquid correspond to the dis-
tortion. As a result of the symmetry of the problem with respect to the x and y axes, there is only a rota-
tional component of the distortion. Therefore,

q’1=“22?ch71(§+—2;—)1n§+¢m, Y1 = Y1 a=l‘ai__'__:l3 2.5)

where Q is the mass flow rate of the liquid; h is the thickness of the stratum; ¢;y and 3y, are holomorphic
between v, and .

The functions ¢, and 3, have the form
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@2 = =Yy 19l + Pagr Py = Py 2.6)
where gw is the lateral stratum pressure; gg and i are holomorphic outside of vy.

The constants in f, P, and ¢ can be assumed equal to zero. Then the constant in ¢, is found with
solution of the problem (2.1)-(2.3).

For equilibrium of the crack, the stresses at its ends must be finite,
Reg/(x1) =0 @.7)

The boundary condition connecting the stress and the displacement at the contour of the crack is ob-
tained from the egquations of motion and the conditions of the conservation of the mass of the liquid in the
crack.

With plane laminar motion, for the volumetric mass flow rate of the liquid through a cross section of
the crack we have [1]

—p2a(E 2.8
7= 1 ( 3 ) ox ¢.8)
where 2d=vy(x, + 0)—Vy(x, —0) is the opening of the crack.
The condition for conservation of the mass of an incompressible liquid is represented in the form
dg/dz~+ h(u,* —u,) — Q8 (x) =0 2.9)

where uy+= y(x, +0), uy" (x, —0) are the filtration rates through the sides of the crack; 6 (x) is a delta func-
tion.

Integrating (2.9) after substitution of (2.8) and going over to variables in the plane ¢, we can obtain the
boundary condition at the contour of the crack in the form

4 2
s (k) 2+ 2

e r(8) 9246+ <L [ (§) — r(20)]=0 @.10)

S @

where the values of the derivatives are taken with respect to yy; r(6)=sign (sin ) is a Rademacher func-
tion.

3. We represent the pressure in the crack in the form

P=pt ancosnﬁ 3.1)

n=2
As a result of the symmetry of the problem with odd values of n, we have pp=0.

Taking account that p; >>1, we further neglect terms of the order 1/py and higher.

For the filtration potential, the pressure, and the mass flow rate of the liquid we have

kT 1
w=TLPk+(Po—Pk)(1—— lnnpc )+§2 (3.2)
p=pk+(po—pk)(1—li“pi>+ Z ——cosne 3.3)
\ =,
kh Po— P
Q= “n T;?k—" (3.4

Taking account of (3.2), we find
Py
P Inp £ [0’ () + @) Inp,— o) InL] + P,

. had g—n-l g—n+1
o—~2—§ P55~ -£9) (3.5)

n—1
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We bring the problem (2.1)-{2.3) to a boundary-value problem for a crack in an infinite region with
continuous displacements.

From (2.2) and 2.3) we find

l ¢
o —¢ = —qut——“—(po—pk)[m(t)—— 2 ;h_’]m.j—Po(t)

v = BTG P () 5 2 Ry ()
£ = 04, @ () = P10 () 9 () = B0 (9
V() =10 (8), V() = Py (B) (3.6)

Introducing the piecewise holomorphic functions

O =g | 0 =), b= o S (0 — ) 2
Y Vi
we represent @i, and 4, in the form
P10 = Qo + Pgs Pro = Py + Py 3.7)
where ¢g and 3 ¢ are holomorphic outside of v,.
Substituting (3.7) into (2.1), we obtain
Bt B o=l e 25—, 3-8

The solution of the problem (3.8) is known [6]. As a result, we find

0= — o 0=t L~ 2 () e St [ e a o p (1 ) [ — £ €.9)

n4+1 Inp,

From the condition for equilibrium of the crack (2.7) we have
Po = (g — apy) / (1 — a) (3.10)

For the displacement of the points of the contour of the crack we find

, gl = b sin(n +-1)6 sin{n—1)90
N ( a)n%zpn( 200 sl ) @3.11)

It is easily seen that, as in a solid body, the condition of the finite character of the stresses in a satu-
rated porous medium ensures the smoothness of the closing of the erack.

We introduce the units of measurements of the length Ry, the stress E/(1—»?%), and the mass flow rate
of the liquid WthzE/n (1—p?). For the dimensionless quantities, we retain the notation of the corresponding
dimensional quantities.

Taking account of (3.10), the mass flow rate of the liquid assumes the form

ki lg,, — py) &
Q=td—amam B~ %3 (3.12)

We substitute (3.3), (3.11), and (3.12) into (2.10):

1 < . 2 o, [sin(n1)0 sm(n—-i)e 1
S—in—e—gznpnslnne{-g—[(i—ﬂ)ﬂ.gzlpn(gm;n_i,i) - n—1 >j| ‘I’“k (1—a)§2lpn/2n—(n?__;__1)_e

— SO DO ks S, mpr ) @) cosnbdd + oz s @ @@ — - 1r @) —r 01} =0 (3.19
! n==g 0 0

For r we have

r(0) = % Z sin n®
n==1, 3, 5,...
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Multiplying (3.13) by sin ng, integrating from 0 to 27, and then setting n=2, 4, 6, ..., we can obtain an
infinite system of algebraic equations of the fourth order with respect to the coefficients pp(n= 2), into which
only the length of the crack enters. (The equations obtained with 1, 3, 5, ..., are satisfied identically).

If the mass flow rate of the liquid is given, the length of the crack is determined from (3.12).

When the mass flow rate of the liquid is not known, but the end-face pressure of the borehole is known,
Pc (with x=0), the system obtained is closed by the equation

=P+ Z (— 1)™p, (3.14)

n=2

4. The character of the equilibrium of the crack is determined by the form of the dependence of p,
on I. The function Pc (1) varies nonmonotonlcally In actuality, with I— 0 and I— e, from (3.13) we obtain a
system of homogeneous equations having the trivial solution pn= 0. Therefore, pc(0)=py and p,(w) =p,, while
the function p.(7) has at least one maximum.

The point 7 =0, pe=p, corresponds to the opening of the crack. Then, with a rise in the value of I, p,
increases.

We postulate that the first maximum of p. () is attained at a point 7, «1. Then, in the segment 1> 1,
a decrease in the value of the function p,(?) corresponds to a growth of the crack with a decrease in the in-
jection pressure. Therefore, the point I, p, =p,(l,) is the limiting point of a stable equilibrium state and
of steady-state flow of the liquid.

Thus, an open crack can exist in equilibrium only with an injection pressure belonging to the region
Po< P < Py

It can be seen from (3.10) that, except for the case ¢ =0 and Py =deo, the pressure of the opening of
the crack always exceeds the stratum pressure. This is due to the fact that, with an increase in the pres-
sure of the saturating liquid, the volume of rock inside the feed contour increases. The far part of the stra-
tum, where the pressure does not vary, prevents the free expansion of the rocks and an additional compres-
sive stress arises in them. The case @ =0 corresponds to ideally cemented rocks, not subject to volumetric
changes. With Pk =, the effective stress in the rocks is equal to zero; therefore, for opening of the crack
it is sufficient to increase the pressure by an arbitrarily small amount.

The permissible values of a lie within the limits from 0 to 0.5. With » =0.2, for soft soils we obtain
a=0.375. On the basis of the experiments of Fatt for the rocks of oil-bearing strata, the degree of cement-
ing has a value £=0.11-0.38 [5]. In these cases, we obtain @ =0.232-0.335. Consequently, with steady-state
filtrationunder the conditions of oil-bearing strata, the pressure of the opening of a crack always exceeds the
stratum pressure by 1.1-1.2 times.

Let us consider the solution of the problem, limiting ourselves to one term in the summation of (3.1),

P = Py -+ p; cos 20 @.1)

From (3.13) we obtain

70— PPt (1 — @) ype? — ypy — e P “-2)
Since |p,| «1, the second quadratic term in (4.2) can be neglected.
For the limiting values we find
R (qu‘.pk)s =0 (4.3)
Py =pot el il t @.9)

With k=0 we have I, =0 and p, =p;. It is obviously true that in an impermeable medium with the in-
jection of a liquid a crack cannot be in equilibrium.

With a rise in the permeability, the limiting pressure, the length of the crack, and the mass flow rate
of the liquid increase. With an increase in the stratum pressure, the limiting injection pressure and the
length of the crack decrease, while, in the cases calculated, the limiting mass flow rate practically does
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not change (on Figs. 1-3 the curves 1, 2, 3,4, and 5 correspond to the values dew=5-10"4, 2.5 1072, 5.1073,
and 51072 with @ =0.335 and pk/qe =0.8).

For cracks of small length, when the condition is satisfied
P(2(ge — pr)/ In &/ PP < "5ky @.5)

the first term in (4.2) can be neglected. Consequently, a predominant part of the liquid is filtered through
a small central part of the crack. Then we find

° ¢ o

In this case, the mass flow rate depends linearly on the injection pressure
Q = 2k (pc — Po) @.7)

The acceptance capacity of a crack dQ/dp,, is In Ry/r times greater than the acceptance capacity of
a borehole of radius r ..

Under the conditions of oil~bearing strata, the region of existence of a stable equilibrium of a crack
is not great.

Let g~ = 125 kg/em?, p, = 100 kg/em?, B, =500 m, h =1 m, k=1d,q=1cP, E= 10° kg/cm?, v= 0.2,
a=0.335.  Then equilibrium of a crack is possible with injection pressures from 138 to 142 kg/cm?. For
limiting values, we have I, =1.13 m; Q,_=1.03 dm?/min; opening in middle of crack 0.192 mm; volume of
crack 0.253 dm3. In accordance with @.6), 4 7), condition @.5) is satisfied with 1< 0.5 m.
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